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1 INTRODUCTION
Regulation of gene expression in eukaryotic cells is mediated in
part by hundreds of sequence specific transcription factors (TFs)
that bind to their individual binding motifs at genomic sequences
proximal to a gene (promoters) as well as at distal elements (en-
hancers). Promoters and enhancers can interact by looping together
in three dimensional space. The binding of TFs at promoters and en-
hancers mediates the recruitment of cellular machinery necessary
for transcription. Prior studies have suggested two classes of TFs: 1)
lineage determining TFs (LDTFs) and and 2) signal dependent TFs
(SDTFs). LDTFs play important roles in establishing cell type spe-
cific patterns of open chromatin (accessible regions of the genome)
[5] whereas SDTFs bind in response to a cellular stimuli, resulting
in cell-specific responses to signals [6] (Figure 1). These studies,
and others, suggest that the context specific gene expression in
a cell type is genetically encoded by combinations of TF binding
motifs at millions of enhancers scattered throughout the genome
[3].

Given the evidence that TFs act collaboratively, it naturally fol-
lows that individual TF motifs have been observed to be poor pre-
dictors of activation of an enhancer. The biological activity of an
enhancer may depend on the specific composition of TF motifs - ar-
rangement and spacing between TF motifs, as well as the sequence
degeneracy of each motif [4]. And so, we endeavored to teach an ar-
tificial neural network (ANN) to predict signal dependent activation
of enhancers by reading arrangements of motifs present at open
chromatin regions. We hypothesize that different arrangements
of motifs can be used to predict the response to different cellular
stimuli.

2 EXPERIMENTAL DESIGN
Using ATAC-seq, and ChIP-seq targeting H3K27Ac, an enhancer
mark associated with active chromatin, we defined active enhancers
in mouse macrophage cells stimulated with an array of cytokines
(IFN-g, IL-1b, IL-4, IL-5, IL-6, IL-13, IL-23, LPS, TNF-a, TGF-b).
This experimental model provides several key advantages: 1) The
macrophage is a well characterized immune cell with robust re-
sponses to signals such as cytokine. 2) By comparing one signal to
another, we can distinguish between SDTFs and general TFs that
play a role in many contexts (Figure 2). 3) Enhancers that respond
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Figure 1: A collaborative hierarchical model for TF binding.
Lineage determining TFs (LDTFs) bind collaboratively to
make cell type regions of chromatin accessible. In response
to a signal, a signal dependent TFs (SDTFs) bind at sites
bound by LDTFs.

Figure 2: Signal response is encoded by combinations of TF
binding sites. Activation of enhancers that respond to
signals A and B are mediated by distinct sets of SDTFs
([SA1, SA2] and [SB1,SB2] respectively). Enhancers that
respond to both signals should contain TF motifs that
mediate both signals.

to multiple signals offer an opportunity to study how elements
that encode the response to individual signals can be composed
together.

3 MODEL DESIGN
The sequence of each enhancer as well as the enhancers’ response
to each signal, is used as input to train an artificial neural network
(ANN) with an attention mechanism to predict signal dependent
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Figure 3: Overview of model

activation of an enhancer. In contrast to traditional ANNs that
combines the input data in a cryptic fashion (via a fully connected
layer) to predict enhancer activity [1, 7], ANNs with an attention
mechanism highlight which regions of the inputs (subsequences
of enhancers that presumably are TF binding motifs) the ANN is
paying attention to as it makes each prediction, thereby divulging
the "reasoning" of the ANN. Here we implement a convolutional
neural network that uses a dot product attention mechanism [2]
to use genomic sequence alone to predict enhancer activity. The
architecture of our neural network is shown in Figure 3.

4 PRELIMINARY RESULTS
To assess the performance of our model architecture, we compared
the performance of our model against the current state of the
art, a convolutional network. We trained our model and an im-
plementation of DeepBind, a previously described convolutional
network,[1], to distinguish accessible enhancers from random ge-
nomic sequences. The performance of our model exceeded that of
the convolutional model, in terms of model accuracy and precision,
at detecting enhancers present in macrophages in 3 separate treat-
ment conditions (Table 1 Att versus Conv). Our model’s increase in
performance versus the convolutional network can be potentially
attributed to the greater number of free parameters used (Table
1). And so, we also trained a large convolutional network (with 54
convolution kernels and 108 dense neurons versus 16 convolution
kernels and 32 neurons in the original model). The improved per-
formance of our model suggests that the attention mechanism is
capable of extracting useful information.

5 FUTUREWORK
While we are encouraged by the performance of our model, we be-
lieve the insights we can extract from the network more important.
We are currently extracting TF binding sites highlighted by our
model and representing each enhancer as a network of TF motifs

Model

Att Conv Large-
Conv

# params 10753 2162 10850

Veh Acc. 0.854 0.822 0.846
Prec. 0.838 0.804 0.830

Tx KLA-1h Acc. 0.859 0.807 0.839
Prec. 0.857 0.791 0.826

IL4-24h Acc. 0.862 0.832 0.847
Prec. 0.858 0.809 0.836

Table 1: Model performance. Mean performance metrics
(n=3), accuracy (Acc.) and precision (Prec.), of 3 models: our
attentive model (Att.), a convolutional network (Conv), and
a large convolutional network (Large-Conv) are shown for
macrophages under 3 treatment conditions

Figure 4: An enhancer represented as a network of TF
motifs. Motifs are represented as nodes. Adjacent, motifs
are connected with edges. The position are annotated at
each node.

(Fig. 4). Next, we will calculate arrangements of motifs that are
enriched at enhancers that respond to a specific cytokine. Thus,
we can determine a compositions of TF motifs that encodes the
transcriptional response to each cytokine, yielding insights into
compositional rules for signal specific TF circuits.
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