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Abstract

The expression of each gene in mammalian cells is con-
trolled by regulatory sequences called enhancers. Reg-
ulatory logic encoded at enhancers is interpreted by
transcription factors (TFs), which recognize individual
‘words’ in the genome. Here we describe a neural net-
work with an attention mechanism that learns to dis-
criminate enhancers from random genomic sequences.
We distill the parameters learned by our model to iden-
tify combinations of TF target sequences that signal ac-
tivation of a gene in response to specific cellular stimuli.

Introduction
Regulation of gene expression in mammalian cells is medi-
ated in part by hundreds of sequence specific TFs that bind to
their individual binding motifs at enhancers, which are dis-
tal regulatory elements located thousands of basepairs away
from a gene. The binding of TFs at enhancers mediates the
recruitment of machinery necessary for transcription such as
RNA polymerase. Prior studies have suggested two classes
of TFs: 1) lineage determining TFs (LDTFs) and and 2) sig-
nal dependent TFs (SDTFs). LDTFs bind to cell type spe-
cific enhancers while SDTFs bind at enhancers bound by
LDTFs in response to a cellular stimuli, resulting in cell
type specific activation of an enhancer in response to stim-
uli (Heinz et al. 2013) (Figure 1). These studies suggest that
context specific gene expression in a cell type is genetically
encoded by combinations of TF binding motifs at millions
of enhancers scattered throughout the genome (Consortium
2012).

Given the evidence that TFs act collaboratively to ac-
tivate enhancers, it follows that individual TF motifs are
poor predictors of whether or not a sequence is an en-
hancer. The biological activity of an enhancer may de-
pend on the composition of TF motifs - arrangement and
spacing between TF motifs, as well as the degeneracy of
each motif (Farley et al. 2016). And so, we endeavored to
teach an attentive neural network (ANN) to distinguish ac-
cessible enhancer elements from background genomic se-
quences in macrophage cells, a cell of the innate immune
system. Our ANN uses a neural mechanism, which is at the
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Figure 1: Attentive neural network learns to ignore non-
functional motifs (faded gray boxes) thereby revealing TF
motifs that control activation in response to signal A and B
respectively

heart of current models for modeling sequences of words in
natural language processing applications such as language
translation and sentiment analysis (Vaswani et al. 2017;
Cheng, Dong, and Lapata 2016). In our ANN, neural atten-
tion allows the model to focus on the TF motifs that are func-
tional at an enhancer and ignore dozens of other nonfunc-
tional motifs (Figure 1). By extracting information learned
by our network, we can identify combinations of TF motifs
that signal the activation of an enhancer in response to cel-
lular stimuli (Figure 1).

Model Design
The architecture of our ANN model is shown in (Figure 2).
To learn words recognized by TFs, Our model applies a 1-
dimensional convolution, convm over 4 channels to the in-
put sequence, s, encoded as a one hot vector (Alipanahi et al.
2015; Kelley, Snoek, and Rinn 2016). To learn relationships
between words, we eschew recurrent neurons, which require
many parameters that are hard to interpret, and use neural
dot product self attention only. The rectified convolution out-
put, R = rect(convm(s) is then fed to the attention layer.
Using the notation of Vaswani et al, we project R using 3
separate sets of weights, forming RWQ, RWK , RWV . The
product A = (RWQ)(RWK)T forms an attention matrix,
which can be used to identify interactions between posi-
tions within a sequence. The output of the attention layer,
(RWQ)(RWK)T (RWV ), a weighted sequence of words
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Figure 2: Overview of attentive neural network model

(higher weight indicate that a word is more important) is
then fed to a single neuron that re-weights each motif at each
position to indicate whether a motif is enriched or depleted.
To predict whether a sequence is an enhancer or genomic
sequence, the output layer simply counts the number of en-
riched motifs that are present within a sequence. Notably,
our model does not apply any pooling or dense layers, al-
lowing our model to learn position specific information for
each individual position in a sequence.

Results
We used ChIP-seq targeting H3K27Ac and ATAC-seq , we
profiled the active enhancers in mouse macrophage cells
stimulated with 3 treatments - Vehicle, KLA, and IL4. These
experiments identified tens of thousands of active enhancers
in each treatment context. To assess the performance of our
model architecture, we compared the performance of our
model against the current state of the art, a convolutional net-
work. We trained our model and an implementation of Deep-
Bind, a previously described convolutional network (Ali-
panahi et al. 2015), to distinguish active enhancers from ran-
dom genomic sequences. The performance of our model ex-
ceeded that of the convolutional model, in terms of model
accuracy and precision (Figure 1). To ensure that the im-
provement in the performance of our model is not due to the
greater number of free parameters (Figure 1), we also trained
a large convolutional network (with 54 convolution kernels
and 108 dense neurons versus 16 convolution kernels and 32
neurons in the original model). The improved performance
of our model suggests that the attention mechanism is capa-
ble of extracting additional useful information.

Future Work
While we are encouraged by the performance of our model,
we believe the insights we can extract from the network are
of greater importance. Using graph clustering approaches,

Att Conv LargeConv
Params 10753 2162 10850

Veh Acc. 0.854 0.822 0.846
Prec. 0.838 0.804 0.830

Tx KLA Acc. 0.859 0.807 0.839
Prec. 0.857 0.791 0.826

IL4 Acc. 0.862 0.832 0.847
Prec. 0.858 0.809 0.836

Table 1: Performance metrics (n=3), accuracy and preci-
sion, of our attentive neural network (Att.), a convolutional
network (Conv), and a large convolutional network (Large-
Conv) are shown for 3 treatment conditions (Veh, KLA, IL4)

Figure 3: Circuit diagram of TFs that need to be present at
an enhancer that activates in cells treated with KLA

we can distill the parameters learned by the model into logi-
cal circuits detailing the TF motifs that need to be present in
an enhancer that responds to a specific stimulus such as KLA
(Figure 3). Using this information, we will be able to design
artificial transcriptional units which are cell type and signal
specific. This would allow us to use well characterized, gen-
eral delivery systems such as adenovirus, which target cells
indiscriminately. We can specify treatment activity by using
a synthetic target specific transcriptional unit designed using
information from our ANN that drives the expression of a
therapeutic transgene. As an example, a transcriptional unit
specific to cancer driving the expression of a immune reac-
tive transgene would allow for immune specific targeting of
the cancer.
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